
Market Efficiency and Inefficiency in

Rational Expectations Equilibria:

Dynamic Effects of Heterogeneous

Information and Noise

John P. Hussman

Stanford University

August 1991
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1.1. Introduction

Are securities prices too volatile? This question is central to evaluating how efficiently

resources are allocated in a competitive market. A large body of literature suggests that

securities markets will generate prices which reflect all available information, even if some

traders are better informed than others. Recent empirical studies place this market effi-

ciency result in dispute, and suggest that the volatility of securities prices is too great to

be explained by volatility in expected future payouts. For example, the decline of over

20% in the Dow Jones Industrial Average on October 19, 1987 seems difficult to explain

as a rational downward revision in expected future dividend streams. Also contrary to the

implications of the efficient markets literature, investors commonly disagree about future

returns, and this disagreement generates nonzero trading volume. This paper examines the

efficiency of financial markets in the context of a dynamic model where traders have het-

erogeneous information, and extract additional information from the endogenous market

price. Market efficiency and inefficiency emerge as special cases of this model.

The focus of the paper is two-fold. First, an approach of Sargent (1991) is modified to

compute dynamic rational expectations equilibria in a securities market where individuals

hold imperfect private information about “fundamentals” which are correlated over time.

The approach is of significant interest in and of itself. Prior attempts to study such

equilibria have encountered the problem of infinite regress, which emerges when traders

must “forecast the forecasts of forecasts . . . ” of others. By neatly circumventing the

problem of infinite regress, rational expectations equilibria may be rapidly computed under

a wide variety of informational assumptions and market structures.

Second, the resulting equilibria are examined in light of previous literature on market

efficiency [including Grossman (1976), Radner (1979), Tirole (1982)], trading volume [Mil-

grom and Stokey (1982)], excess volatility [Shiller (1981)], mean reversion [DeBondt and

Thaler (1985)], dividend yield effects [Fama and French (1987)] and noise trading [Gross-

man (1976), Campbell and Kyle (1988)]. In an equilibrium where fully rational traders

are endowed with imperfect private information, the rational expectations equilibrium

exhibits strong market efficiency, and zero trading volume. However, when the market

is contaminated by a small amount of noise in the net supply of the security available
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to rational traders, market efficiency fails to hold. In these “noisy” rational expectations

equilibria, the market exhibits a wide range of anomalies such as mean-reversion, “ex-

cess” volatility, trading volume, and significant correlation between dividend yields and

subsequent returns.

With the notable exception of Singleton (1987), models of heterogeneous information

in securities markets have generally been confined to a two-period market structure. When

information is imperfect and true market fundamentals are correlated across time, the

problem of infinite regress creates difficulties in obtaining rational expectations equilibria.

Consider two classes of traders, a and b, each having access to private, but imperfect

information. Each class has an incentive to infer the information of the other class by

observing the market price. If the beliefs of class a are modelled as state variables which

are unobserved by class b, then the beliefs of class b about the beliefs of class a are also

unobserved state variables to class a, and so on. As Sargent (1991) notes, such an approach

causes the dimension of the state vector describing the economy to become infinite.

Townsend (1983) and Singleton (1987) have approached this problem by limiting the

information structure so that the true state variables in the economy are observed by all

agents after a lag of j periods. Using a method of undetermined coefficients, Townsend

analyzes a model motivated by Pigou (1929), where firms extract signals about the true

state of the economy by observing endogenous output prices. Singleton extends Townsend’s

approach to study a model where traders infer information from endogenous asset prices,

and asset supplies are perturbed by unobserved and serially correlated shocks.

Sargent (1991) describes a method for computing equilibria for the case where j = ∞;

that is, where the true state variables of the economy are never perfectly revealed to agents.

The method is used to compute the equilibria presented in sections 1.4 and 1.5 of this paper.

Instead of modelling the beliefs of each class of agents as unobserved state variables, agents

are modelled as forecasting by fitting vector ARMA models for all information available to

them, including endogenous variables such as prices. By imposing market clearing, these

forecasts generate the actual laws of motion for the endogenous variables in the economy.

Equilibrium is then defined as the fixed point of a finite dimensional operator that maps

perceived laws of motion to actual laws of motion. The method draws on Muth’s (1960)
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observation that the space spanned by a pure infinite order autoregression may, in some

cases, be replicated by a finite order ARMA process.

The paper is structured as follows. Section 1.2 describes a simple stock market in

which dividends are the sum of persistent and purely temporary components. An analyti-

cal solution for the stock price is derived, yielding a “full information” equlibrium. It will

be useful to compare this solution with subsequent equilibria calculated under imperfect

information. Section 1.3 introduces this imperfect information in the form of noise-ridden

signals received by traders about various components of the dividend process. A ratio-

nal expectations equilibrium is defined, and the method for computing this equibrium is

described.

Section 1.4 analyzes the rational expectations equilibrium obtained in a market which

is free of “noise” in the net supply of the security. This equilibrium is found to be consis-

tent with a large volume of literature regarding market efficiency. Section 1.5 analyzes a

“noisy” rational expectations equilibrium. This equilibrium is found to exhibit a number of

inefficiencies and anomalies which have been cited in empirical literature on the U.S. stock

market. Section 1.6 concludes the paper, and suggests extensions for further research.

1.2. Market equilibrium with complete information

Consider a stock market in which the process for dividends is driven by persistent and

purely temporary components. The persistent components follow first order autoregres-

sive processes. The most persistent component is denoted θ1t. A second, less persistent

component is denoted θ2t, and a third, purely transitory component εt also perturbs the

dividend process. The dividend Dt is the sum of these three components.

Dt = θ1t + θ2t + εt (1)

The shocks to each component, ν1t, ν2t and εt are mutually orthogonal white noise

innovations with mean zero and variances σ2
ν1
, σ2

ν2
, and σ2

ε . The persistence of shocks to

θ1t and θ2t is governed by the parameters ρ1 and ρ2.

θ1t = ρ1θ1t−1 + ν1t

θ2t = ρ2θ2t−1 + ν2t
(2)
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In an economy with complete information, each trader observes each of these compo-

nents directly, so that no trader faces a problem of signal extraction. There are N traders,

indexed by j. Following Grossman (1976), traders are assumed to have constant absolute

risk aversion (exponential utility). This assumption results in security demand functions

which are conveniently linear in price, with the drawback that they are independent of

wealth. Each trader chooses a quantity Qj
t of shareholdings to maximize the expected

utility of next-period wealth W j
t+1. A share of stock is a claim on the infinite stream of

future dividends. The share price is denoted Pt, and the constant gross interest rate is

denoted R. Each trader then faces

max
Qj

t

Ej
t

[
− exp

(
−W j

t+1

φ

)]
(3)

subject to

W j
t+1 = RW j

t +Qj
t (Pt+1 +Dt+1 −RPt) (4)

where φ is a constant coefficient of risk tolerance (the inverse of risk aversion), and Ej
t

denotes the expectation of trader j conditional on the set of information Ωj
t available to j

at time t.

The solution of this problem has a simple return/risk interpretation. Traders hold a

position that is linear in the difference between the expected return on stocks and the rate

of interest. Risk aversion and the existence of forecast errors prevent traders from taking

an infinite position based on expected return differentials. The demand of each trader is

Qj
t =

φEj
t [Pt+1 +Dt+1 −RPt]

σ2
Pt+1+Dt+1

|Ωj
t

(5)

where the denominator is simply the variance of forecast errors for trader j, conditional

on information available at time t. Since all traders share the same information set, and

therefore hold identical expectations, the denominator may be abbreviated to σ2, and the

index j may be omitted from the expectations operator.
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The total amount of stock is denoted Q̄. Market clearing then implies

Pt = R−1

(
Et[Pt+1 +Dt+1]− Q̄σ2

Nφ

)
(6)

which may be solved forward to yield

Pt = Et

[ ∞∑
i=1

R−iDt+i

]
−Ψ (7)

where

Ψ =
Q̄σ2

Nφ(R− 1)
. (8)

Note that the equilibrium price is simply the present discounted value of expected

future dividends, less a constant risk factor Ψ which is linear in the total supply of the

security. Using the lag operator L as outlined in Appendix 1A at the end of this chapter,

the stock price may then be expressed as a function of current and past shocks to the

dividend process:

Pt =
ρ1

(R− ρ1)(1− ρ1L)
ν1t +

ρ2
(R− ρ2)(1− ρ2L)

ν2t −Ψ (9)

Finally, as a benchmark for evaluating the equilibria calculated in subsequent sections,

it will be useful to derive analytical expressions for price and dividend variances under full

information. Using (1), (2) and (9), the expected return on the stock in equilibrium is

found to be

Et [Pt+1 +Dt+1] = RPt +
Q̄σ2

Nφ
, (10)

the variance of forecast errors σ2 is

σ2 =

(
R

R− ρ1

)2

σ2
ν1

+

(
R

R− ρ2

)2

σ2
ν2

+ σ2
ε , (11)

the covariance of the stock price and dividend is

Cov(Pt, Dt) =

(
ρ1

R− ρ1

)(
1

1− ρ21

)
σ2
ν1

+

(
ρ2

R− ρ2

)(
1

1− ρ22

)
σ2
ν2
, (12)
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the variance of the stock price is

V ar(Pt) =

(
ρ1

R− ρ1

)2 (
1

1− ρ21

)
σ2
ν1

+

(
ρ2

R− ρ2

)2 (
1

1− ρ22

)
σ2
ν2
, (13)

and the variance of the dividend is

V ar(Dt) =

(
1

1− ρ21

)
σ2
ν1

+

(
1

1− ρ22

)
σ2
ν2

+ σ2
ε . (14)

1.3. Computing market equilibria with imperfect information and signal

extraction

In the foregoing section, it was possible to derive an analytical solution for price

because all variables were directly observable and traders shared the same information set.

When the underlying components of the dividend process θ1t, θ2t and and εt are not directly

observable, it is still possible to derive an analytical solution for price by treating these

components as unobserved state variables and using equations associated with the Kalman

filter. Unfortunately, this technique breaks down when information is both imperfect

and heterogeneous. In this case, traders have an incentive to extract information from

the endogenous price. If the beliefs of one class of traders are modelled as hidden state

variables to each other class of traders, the problem of infinite regress causes the state

vector associated with the Kalman filtering problem to become unbounded in dimension.

Sargent (1991) provides an alternative approach to calculating rational expectations

equilibria when imperfectly informed agents extract signals from endogenous variables.

The idea is to model agents as forecasting using vector ARMA models for all variables

which are observable. Equilibrium is calculated as the fixed point in the mapping from

these perceived ARMA processes to the actual ARMA process induced by these percep-

tions. Sargent also provides a method for checking whether the ARMA models which

agents fit are “full order”; that is, whether agents would have an incentive to fit higher

order models in equilibrium. When a full order equilibrium is achieved, the forecasts us-

ing the finite dimensional ARMA models are identical to the forecasts which would be

generated if agents were to condition on the infinite history of their observables. This

section describes how to map a simple stock market into the objects described by Sargent.
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Further details are presented in Appendix 1B at the end of this chapter. The notation and

organization is largely consistent with the original paper to facilitate comparison.

There are two classes of rational traders, indexed by j = a, b. The total number of

rational traders is N , with a proportion αa in class a, and αb in class b. The risk tolerance

of each class, respectively, is denoted φa, and φb. In some versions of the model analyzed

here, there is also a class of noise traders who demand a random quantity Qn
t of the

security. Following Grossman (1976) and others, this random element may alternatively

be interpreted as unobserved variability in the aggregate supply of the security.

Information in this stock market is imperfect and heterogeneous. Traders in class a

receive a signal Sa
t on the most persistent component of dividends θ1t, contaminated by

a white noise error term µa
t . Traders in class b receive a signal Sb

t on the less persistent

component θ2t, contaminated by a white noise error term µb
t .

Sa
t = θ1t + µa

t

Sb
t = θ2t + µb

t

(15)

Each trader j observes the stock price Pt, the private signal Sj
t , and the dividend Dt.

The vector of these observables is denoted zjt. So a trader in class a observes a record of

current and past

zat =


 Pt

Sa
t

Dt


 .

Trader a has a perceived law of motion for zat which is a first order vector ARMA of

the form

zat = Aazat−1 + ζat + Caζat−1 (16)

where ζat is the innovation in zat conditional on the history za
t−1. This perceived law of

motion may be written as

[
zat
ζat

]
=

[
Aa Ca

0 0

] [
zat−1

ζat−1

]
+

[
I
I

]
ζat (17)

or
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xat = βaxat−1 +

[
I
I

]
ζat (18)

where xat =

[
zat
ζat

]
and βa =

[
Aa Ca

0 0

]
. The perceived laws for traders of class b are

symmetric. Given these perceptions, traders form period-ahead forecasts according to

Exat|xat−1 = βaxat−1

Exbt|xbt−1 = βbxbt−1

. (19)

The actual law of motion for price results from the asset demands arising from these

expectations. In a rational expectations equilibrium, trader’s perceived laws of motion

must give rise to an actual law of motion consistent with those perceptions.

Sargent describes the approach to calculating a rational expectations equilibrium as

follows. The state vector of the economy is denoted zt. The state evolves according to

zt = T (β)zt−1 + V (β)εt (20)

The observables xat, xbt are subvectors of zt. For a given set of perceptions β = (βa, βb),

the actual law of motion (20) may be used to obtain the projections of xjt on xjt−1 for

j = a, b. These projections are denoted

Exjt|xjt−1 = Sj(β)xjt−1 (21)

where Sj(β) is obtained using the linear least squares projection formula. Marcet and

Sargent (1989a) define a limited information rational expectations equilibrium to be a

fixed point where βa = Sa(βa, βb), βb = Sb(βa, βb).

The stock market model considered here fits conveniently into the fixed point mapping

just described. We define state vector of the entire system as zt, where
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zt =




Pt

Sa
t

Sb
t

Dt

θ1t
θ2t
Qn

t

ζat
ζbt




(22).

The vector of shocks εt is defined as

εt =




µa
t

µb
t

ν1t
ν2t
εt
ωt


 (23)

where the ωt is a serially uncorrelated shock to Qn
t . The inclusion of Qn

t in the state

vector allows us to examine equilibria with serially correlated noise. When noise is serially

uncorrelated, it may be excluded from the state. When there is no noise, ωt may be

omitted from the εt vector. It is convenient to consider price in terms of deviation from

the mean, which corresponds to setting the supply constant Q̄ = 0.

Appendix 1B details the mapping from the perceptions of traders (βa, βb) to the actual

law of motion for the state vector. The appendix includes equations for the covariance

matrix Mz of the state vector, and the optimal projection laws S(β) = (Sa(β), Sb(β)).

Equilibrium in this market is defined as follows:

Definition � A rational expectations equilibrium with imperfect, heterogeneous infor-

mation is the fixed point β = S(β). This equilibrium satisfies the following conditions:

i) the equilibrium stockholdings Qa
t , Q

b
t solve (3), (4) for traders a, b;

ii) the market for the security clears; Q̄ = αaNQa
t + αbNQb

t +Qn
t .

The following sections present a number of equilibria computed using this method.

1.4. Market efficiency in a “pure� rational expectations equilibrium

The first equilibrium under consideration is a market unperturbed by noise in the

supply of stock available to rational traders. Traders differ only in the signal which they
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receive about the dividend process. The issue of market efficiency is central to our in-

vestigation of this equilibrium. In the context of a speculative market where there is no

insurance motive for trade, Tirole (1982) proves that the market price will fully commu-

nicate private information. The current price Pt must be equal to R−1E [Pt+1 +Dt+1].

This equality holds for every trader, so that no trader expects an excess return conditional

on observing both the private signal and the market price. As Milgrom and Stokey (1982)

have shown, the volume of trade in the security must be identically zero.

While Tirole’s result characterizes the properties of a rational expectations equilibrium

in the absence of supply noise, it does not show how to compute such an equilibrium. The

fixed point approach outlined in section 1.3 allows us to address this question directly, by

giving a convenient regression interpretation to the inference problems faced by traders.

The following parameter values are used to calculate a rational expectations equilib-

rium in the absence of supply noise.

Risk tolerances: φa = 1 φb = 1

Trader proportions: αa = .5 αb = .5

θ persistences: ρ1 = .8 ρ2 = .4

Constants: N = 1 Q̄ = 0

Gross interest rate R = 1.1000

Innovation covariances:

E



µa
t

µb
t

ν1t
ν2t
εt





µa
t

µb
t

ν1t
ν2t
εt



′

=



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




Recall that traders fit first order ARMA models for their observable variables. These

models may be written

[
zjt
ζjt

]
= βj

[
zjt−1

ζjt−1

]
+

[
I
I

]
ζjt

where
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zjt =


 Pt

Sj
t

Dt


 βj =

[
Aj Cj

0 0

]
.

Using the parameter values given above, the equilibrium values are calculated to be

βa = Sa =




1.3172 −0.8551 −0.5241 0.0317 0.3310 0.0000
0.6879 −0.6413 −0.3931 0.0238 0.2482 0.0000

−0.2172 0.8551 0.5241 −0.0317 −0.3310 0.0000
0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000

−0.0000 0.0000 0.0000 0.0000 −0.0000 0.0000
0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000




βb = Sb =




0.8315 −0.1626 −0.0840 0.0011 0.0786 0.0000
−0.0551 0.2845 0.1470 −0.0019 −0.1375 0.0000
0.2685 0.1626 0.0840 −0.0011 −0.0786 0.0000
0.0000 0.0000 −0.0000 0.0000 0.0000 0.0000
0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000
0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000




These equilibrium values reveal a striking fact. Even though traders have different

information, and use different formulas to compute projections for their observables, both

traders can be shown to hold identical expectations about future returns in equilibrium.

The equilibruim exhibits full communication. To see this, note that for each trader j, the

first row of βj is the vector of coefficients used to compute the expectation of Pt+1. The

third row of coefficients is used to compute the projection of Dt+1. Summing the first

and third rows to compute E[Pt+1 + Dt+1] for each trader j, we notice that all of the

coefficients exactly offset eachother, except the coefficient on the first element of xj
t : Pt.

The sum of these initial coefficients, not coincidentally, is 1.1000. This is the parameter

value which was chosen for the gross interest rate R. Thus Tirole’s result holds exactly.

For both traders, E[Pt+1 +Dt+1] = RPt so that no trader expects an excess return from

trading on his information.

The moment matrix of the state vector Mz may be used to investigate the properties

of this equilibrium in greater detail. For each trader, the covariance matrix of forecast

errors ζjt (corresponding to Pt, S
j
t and Dt) is a submatrix of Mz. The computed values

are
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Eζat ζ
a′
t =


 6.5765 3.3428 3.8265
3.3428 2.2635 1.2172
3.8265 1.2172 3.2334




Eζbt ζ
b′
t =


 6.5765 0.4837 3.8265
0.4837 2.0625 1.0162
3.8265 1.0162 3.2334


 .

It is straightforward to show that

σ2
a = σ2

b = 17.4628

which is equal to the actual variance of Pt+1 + Dt+1 − RPt. This confirms that excess

returns (measured as the difference between actual returns and the rate of interest) are

unforecastable in this market. When the asset supply Q̄ is strictly positive, the return to

holding the stock is augmented by a constant risk premium.

An attractive feature of this equlibrium is that it is “full order”, meaning that traders

would have no incentive to fit higher order ARMA models to improve their forecasts. The

Kalman filter provides a simple way to confirm this. For each trader j, the law of motion

for the state vector zt and the selector matrix uj (defined in appendix 1B) can be used

to compute the Kalman gain and an associated covariance matrix of forecast errors. This

matrix includes the error covariances on Pt, S
j
t , and Dt which would emerge if traders

were allowed to condition on the entire history of their observables. When the equilibrium

is full order, the error covariances given by the Kalman filter are identical to Eζjt ζ
j′
t for

j = a, b. This condition is satisfied in the equilibrium calculated above.

The moment matrix Mz also provides the following covariance matrix for the variables

[Pt S
a
t S

b
t Dt θ1t θ2t].




17.5277 7.4074 0.6803 8.0877 6.3923 0.8430
7.4074 3.7778 0.0000 2.7778 2.7778 0.0000
0.6803 0.0000 2.1905 1.1905 0.0000 1.1905
8.0877 2.7778 1.1905 4.9683 2.7778 1.1905
6.3923 2.7778 0.0000 2.7778 2.7778 0.0000
0.8430 0.0000 1.1905 1.1905 0.0000 1.1905




Note that Cov(Pt, Dt) = 8.0877 and V ar(Dt) = 4.9683. These are equivalent to the values

obtained by substituting the parameter values for this market into equations (12) and (14),
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derived under the assumption of full observability. Since the information errors µa
t and

µb
t are uncorrelated with Dt, any effect of these errors on Pt will not be picked up by

Cov(Pt, Dt). Given the current dividend Dt, the conditional expectation of Pt is

E [Pt |Dt] =

[
Cov(Pt, Dt)

V ar(Dt)

]
Dt = 1.6279Dt.

Any deviation of the actual price from this conditional expectation is attributable to infor-

mation and errors carried in private signals. Since excess returns are unforecastable, such

deviations do not present opportunities for profit. We will return to this issue in section

1.5.

The information errors µa
t and µb

t do cause a number of differences between the equi-

librium calculated here and the equilibrium derived analytically (under full information)

in section 1.2. In the limited information equilibrium, the variance of excess returns is

σ2 = 17.4628. This compares to σ2 = 16.9138 calculated using (11) under full informa-

tion. At the same time, V ar(Pt) = 17.5277 with limited information, but using (13), we

find that V ar(Pt) = 20.1418 under full information.

The lower variance of Pt under limited information is consistent with market efficiency,

and underlies the excess volatility tests of Shiller (1981), West (1988), and Durlauf and

Hall (1989). In an efficient market, Pt is equal to the present value of rationally expected

dividends. If agents had perfect foresight, the variance of Pt would be identical to the

variance of the discounted stream of future dividends. If information is imperfect and

agents forecast future dividend streams rationally, their forecast errors must be orthogonal

to their fitted values. It then follows that the variance of the fitted values — V ar(Pt)

— must be less than the variance of the ex-post streams actually realized. In an efficient

market, greater imperfection in information drives the variance of Pt downwards, and raises

the variance of forecast errors.
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Table 1.1

Impulse response of Pt with zero noise trade
t µa µb ν1 ν2 ε

1 1.0151 -0.1627 1.8676 0.6897 0.8524
2 0.2700 -0.1110 1.9231 0.3239 0.1590
3 0.0748 -0.0392 1.6488 0.1258 0.0355
4 0.0211 -0.0121 1.3491 0.0472 0.0090
5 0.0060 -0.0036 1.0876 0.0178 0.0024
6 0.0017 -0.0010 0.8725 0.0068 0.0007
7 0.0005 -0.0003 0.6987 0.0026 0.0002
8 0.0001 -0.0001 0.5591 0.0010 0.0001
9 0.0000 -0.0000 0.4474 0.0004 0.0000
10 0.0000 -0.0000 0.3579 0.0002 0.0000

In a market with full information, Pt is affected only by “fundamental” shocks ν1t, ν2t

which are relevant to the future stream of dividends. Evidently, in a market with imperfect

information, errors in information µa
t , µ

b
t and purely transitory dividend shocks εt also have

an effect on equilibrium prices. This is because these shocks are partially interpreted as

fundamental information. The effect on price may also persist for several periods, as new

information slowly helps agents to reinterpret past shocks. The impulse responses of Pt to

unit shocks in µa
t , µ

b
t , ν1t, ν2t and εt are presented in Table 1.1.

Finally, it is possible to address the issues of “learning” and “implementation” in

the context of this rational expectations equilibrium. Bray and Kreps (1981) have posed

the question “Could agents in the model who initially don’t know how to form ratio-

nal expectations learn how to do so by using standard statistical techniques on the data

generated by the model?” Bray (1982) investigates this question in the context of the

Grossman-Stiglitz (1980) model with informed and uninformed traders. Although traders

are estimating models which are misspecified while they learn, Bray shows that an ordi-

nary least squares learning procedure will converge almost surely to a rational expectations

equilibrium. Marcet and Sargent (1989b) demonstrate this convergence result in a model

where all agents are imperfectly informed. This convergence property of OLS learning is

the basis for the fixed point approach presented in section 1.3.

The question of “implementation” is related. If traders expect zero excess returns from

trading on their information, how does information become impounded in price? A useful
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insight is suggested by the recursive procedure used here to compute equilibria. For any

market which is some small distance δ from the efficient rational expectations equilibrium,

there are subtle profits available to traders who act on their information. The subtle profit

opportunities cause slight alterations in the projection laws βa, βb and the resulting asset

demands of traders. These alterations, in turn, force the market to converge towards an

efficient equilibrium. The efficiency of the market in a rational expectations equilibrium is

therefore enforced by the profit opportunities which exist in a stable neighborhood of that

equilibrium.

1.5. Market inefficiency in a “noisy� rational expectations equilibrium

A growing volume of literature suggests that while market efficency theorems are

robust with respect to the quality and allocation of private information, the existence

of a seemingly trivial amount of “noise” can substantially undermine market efficiency.

Grossman (1976), Hellwig (1980), Verrecchia (1982), Admati (1985), and Wang (1990)

model this noise as variability in the unobserved supply of the security. Noise may also be

modelled as unobserved variability in demand by “noise traders” as in Campbell and Kyle

(1988). Noise traders are defined by Shleifer and Summers (1990) as individuals who “are

not fully rational” in that “their demand for risky assets is affected by beliefs or sentiment

that are not fully justified by fundamental news”.

Regardless of whether noise is considered a supply or a demand phenomenon, the key

characteristic is that the net supply available to fully rational traders is a random variable.

When noise is unobservable, rational traders are faced with the signal extraction problem

of discerning whether a change in price is due to other rational traders acting on private

information about fundamentals, or whether it is due to fluctuations in unobserved supply.

The breakdown of market efficiency in the presence of noise is analogous to the monetary

non-neutrality result in Lucas (1972). In the Lucas model, changes in the unobserved

supply of money in the economy generate real economic effects by causing changes in

output prices which are partly interpreted as “fundamental” information about the terms

of trade.

The parameters from section 1.4 are used to compute the market equilibrium in the

presence of noise. In addition, there is a serially uncorrelated noise disturbance ωt with
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variance σ2
ω = .01. The equilibrium projection laws are calculated to be

βa = Sa =




0.4081 1.0497 −0.0046 −0.3406 −0.3748 0.5565
0.0000 0.8000 −0.0000 0.0091 −0.4404 0.1537

−0.0000 0.4000 0.4000 −0.0013 −0.1354 −0.0713
0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000
0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000

−0.0000 0.0000 −0.0000 0.0000 −0.0000 0.0000




βb = Sb =




0.4436 −0.9742 0.9504 −0.2845 0.6364 −0.1078
−0.0000 0.4000 0.0000 −0.0104 −0.2281 0.0799
−0.0000 −0.4000 0.8000 0.0462 0.3717 −0.4045
0.0000 0.0000 −0.0000 −0.0000 −0.0000 0.0000
0.0000 0.0000 −0.0000 −0.0000 −0.0000 0.0000

−0.0000 −0.0000 0.0000 0.0000 0.0000 −0.0000




Note that unlike the equilibrium presented in section 1.4, the elements in rows one and

three do not offset eachother, which implies that in this noisy equilibrium, traders a and b

have divergent expectations regarding [Pt+1 +Dt+1]. By the fact that traders a and b are

rational, we then conclude that excess market returns, measured as [Pt+1 +Dt+1 −RPt],

must be partially correlated with information available to traders. Further calculations

using the moment matrix Mz verify this conclusion. The variance of excess market returns

is 28.7029, but the variances of forecast errors for traders a and b are

σ2
a = 22.2667 σ2

b = 23.7299

In terms of the coefficient of determination, it is easily verified that trader a has an R2 =

.2242, and trader b has an R2 = .1733 in forecasting excess returns. This predictability is

not solely due to the posession of private information. Restricting the information set to

Pt and Dt alone yields an R2 = .1290 in forecasting excess returns.

The existence of predictable excess returns in an equilibrium with rational traders

seems a bit odd. There are two factors which drive inefficiency in the market considered

here. The first, clearly, is the existence of noise, which forces rational traders to hold a

randomly varying supply of the security. This unobservable variation confounds the infer-

ence problems faced by traders, and causes them to rely heavily on their own information
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signals. When the equilibrium is calculated with a lower noise variance σ2
ω = .005, the

variance of excess market returns drops to 22.4252, and the R2 drops to .1358 for the ex-

cess return forecasts of trader a, .0761 for the forecasts of trader b, and .0455 for forecasts

based on fully public information Pt and Dt.

Campbell and Kyle (1988) analyze a model in which noise traders are able to have

an effect on price because rational traders are risk averse. This risk aversion effect also

appears in the model presented here. The demand function (5) for each trader implies

that, in the presence of forecast errors, no trader chooses to hold an infinite position based

on an expected excess return. Indeed, when the equilibrium is calculated with higher risk

tolerance φa = φb = 2, the variance of excess market returns drops to 20.0446, and the

R2 drops to .0872 for trader a, .0313 for trader b, and .0154 for forecasts based on public

information.

In a noisy rational expectations equilibrium, Tirole’s (1982) efficiency result fails to

hold. Rational traders expect a gain from trading on their information. Excess returns

are available even on the basis of public information, because risk averse traders must

receive compensation for the disutility of providing liquidity to other market participants.

Unobservable noise also creates an externality in that rational traders are able to extract

rents from costless private information.

A further interaction between noise and private information is that greater imperfec-

tion in private information need not drive down the variance of price monotonically, as is

the case in a market free of noise. Wang (1990) notes in a model of informed versus un-

informed traders that in the extreme case where all rational traders are uninformed, “the

fact that nobody knows anything enables everybody to know something”. Specifically,

the absence of heterogeneity in the information signals of rational traders allows them to

perfectly infer the amount of noise in the market. The introduction of private information

enables the market price to reflect the dividend process more accurately, but destroys the

revelation of supply shocks. The effect of increased information on the variance of price is

then ambiguous.

The covariance matrices of forecast errors ζjt (corresponding to Pt, S
j
t and Dt) for

j = a, b are
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Eζat ζ
a′
t =


 11.1479 2.5175 3.9412

2.5175 2.2913 1.2111
3.9412 1.2111 3.2365




Eζbt ζ
b′
t =


 11.8165 0.6341 4.2710

0.6341 2.0695 0.9853
4.2710 0.9853 3.3715


 .

These matrices match the covariance matrices which would emerge if traders were allowed

to condition on the infinite history of their observables. This equilibrium is therefore full

order, and traders have no incentive to fit higher order models to improve their forecasts.

The moment matrix Mz also provides the following covariance matrix for the variables

[Pt S
a
t S

b
t Dt θ1t θ2t].




21.2247 6.3530 0.9629 8.0881 5.8515 1.1463
6.3530 3.7778 0.0000 2.7778 2.7778 0.0000
0.9629 0.0000 2.1905 1.1905 0.0000 1.1905
8.0881 2.7778 1.1905 4.9683 2.7778 1.1905
5.8515 2.7778 0.0000 2.7778 2.7778 0.0000
1.1463 0.0000 1.1905 1.1905 0.0000 1.1905




Note that the variance of Pt is 21.2247, which is higher than the value of 20.1418 which

would emerge with zero noise and full information. In this model, given our parameter

values, the existence of noise raises the variance of Pt. This is not a necessary result. When

noise is modelled with serial correlation, some parameter values generate a variance for

Pt which is below the full information value. Since excess returns are predictable in both

cases, movements in price will not be attributable solely to surprises in rationally expected

dividends.

Shiller (1981) used a test based on the variances of prices and ex-post dividend streams

to demonstrate that U.S. stock prices display “excess volatility”. As Durlauf and Hall

(1988) point out, the excess volatility test of Shiller will detect noise which significantly

raises the variance of Pt, but will not be able to detect variance-lowering noise. The

Durlauf-Hall test is more powerful, and exploits an orthogonality restriction implied by

the dividend discount model: the covariance between price and the discounted value of

ex-post dividends should be equal to the variance of price itself. Using this test, Durlauf

and Hall (1989) find that the variance of U.S. stock prices is dominated almost entirely by
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a noise component unrelated to the variance of expected future dividends. These findings

of “excess volatility” in the U.S. stock market are fully consistent with the model at hand.

The ability of dividend yields (or dividend price ratios) to predict subsequent stock

returns has been noted in empirical studies including Shiller (1986) and Flood, Hodrick and

Kaplan (1986). Fama and French (1987) find that dividend yields can explain more than

25% of the variance of 2 to 4 year returns. The noisy rational expectations equilibrium

presented here offers insights into these findings.

The interpretation given by Fama and French is that dividend yields “track” time

varying risk premia. That is, an increase in the dividend yield is a signal that the required

return of investors has increased. An increase in required return drives the current price

down, and simultaneously raises the expected future return. The argument is analogous

to the exchange rate overshooting model of Dornbusch (1976). In the Dornbusch model,

a monetary shock which depresses the domestic interest rate relative to the foreign rate

is associated with an immediate “overshooting” depreciation of the domestic currency,

followed by an expected subsequent appreciation.

While the excess returns available to rational traders are a result of risk aversion in this

model, it is misleading to interpret these excess returns as time-varying risk premia. The

notion of time-varying risk premia implies that discount factors or the second moments of

the data are in question, and that the required return of all traders fluctuates over time. In

the model presented here, all variables are covariance stationary, and the discount factor R

is a constant. It is more appropriate to interpret excess returns as compensation demanded

by rational traders for the service of providing liquidity and information to other market

participants in the presence of uncertainty. The size of this compensation is a function of

risk aversion and the level of noise.

The explanation of dividend yield effects offered here is therefore quite simple. The

dividend yield is a useful predictor of excess returns because noise generates significant

mean-reverting swings from fundamental value. A proxy for this fundamental value is

E[Pt |Dt]; the expectation of price conditional on the current dividend. When the stock

price is temporarily depressed relative to this measure, the dividend yield is relatively

high, and positive excess returns are observed as price subsequently advances towards
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fundamental value. When the stock price is temporarily elevated relative to this measure,

the dividend yield is relatively low, and negative excess market returns are observed as

price subsequently falls towards fundamental value.

The matrices Mz and T (β) provide an elegant method of supporting this assertion.

The expected excess return, conditional on Pt, Dt is calculated to be

E [Pt+1 +Dt+1 −RPt |Pt, Dt] = [−0.6778 1.1034]

[
Pt

Dt

]
. (24)

In the efficient market considered in section 1.4, these coefficients are identically zero. The

expectation of Pt conditional on Dt is

E [Pt |Dt] =

[
Cov (Pt, Dt)

V ar (Dt)

]
Dt = 1.6279Dt

If Pt is subject to excessive, but mean reverting swings relative to its conditional expec-

tation E[Pt |Dt], then we would expect the magnitude of expected excess returns to be

proportional to the deviation of price from this value. That is, we would expect to find

some adjustment coefficient γ such that

E [Pt+1 +Dt+1 −RPt |Pt, Dt] = γ [−1 1.6279]

[
Pt

Dt

]
. (25)

It is easily seen that (25) satisfies (24) with γ = .6778. Recent evidence of mean re-

version in U.S. financial markets [DeBondt and Thaler (1985), Lo and MacKinlay (1988),

Poterba and Summers (1988)] therefore appears consistent with a noisy rational expecta-

tions equilibrium.

The impulse responses of Pt to innovations in µa
t , µ

b
t , ν

a
t , ν

b
t , εt and ωt are presented

in Table 1.2. The shock to ωt is .1 unit (representing 1 standard deviation). The remaining

innovations are unit shocks.
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Table 1.2

Impulse response of Pt in a noisy market
t µa µb ν1 ν2 ε ω

1 0.5015 -0.1834 1.5917 0.9068 1.0903 2.3772
2 0.1783 -0.1438 1.7268 0.4940 0.2751 0.1218
3 0.0708 -0.0701 1.5430 0.2183 0.0908 0.0503
4 0.0291 -0.0312 1.2983 0.0908 0.0348 0.0205
5 0.0121 -0.0135 1.0648 0.0369 0.0141 0.0082
6 0.0050 -0.0058 0.8626 0.0148 0.0058 0.0033
7 0.0020 -0.0024 0.6945 0.0059 0.0024 0.0013
8 0.0008 -0.0010 0.5574 0.0023 0.0010 0.0005
9 0.0003 -0.0004 0.4467 0.0009 0.0004 0.0002
10 0.0001 -0.0002 0.3576 0.0004 0.0002 0.0001

Trading volume is generated in this noisy rational expectations equilibrium. Even

rational traders will transact with eachother. The no-trade theorem of Milgrom and Stokey

does not hold here because not all asset demands are rationally conditioned on payoff

relevant information, so traders cannot perfectly infer this information from prices. Still,

a high proportion of total trade is due to rational traders transacting with noise traders,

and only a small amount of trade is generated by rational traders transacting among

themselves. Trading volume is calculated as half the sum of absolute changes in the

positions of individual traders (including noise traders):

V olume = .5
( |∆αaNQa

t | + |∆αbNQb
t | + |∆Qn

t |
)
.

If noise is serially uncorrelated, Qn
t = ωt. Table 1.3 presents the impulse responses of

trading volume and the total shareholdings of a and b (αaNQa
t , αbNQb

t) induced by a unit

shock to noise ωt.
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Table 1.3

Impulse response of trading volume and holdings to noise
t Volume αaNQa

t αbNQb
t

1 1.0000 -0.5519 -0.4481
2 1.0000 -0.0131 0.0131
3 0.0079 -0.0053 0.0053
4 0.0031 -0.0022 0.0022
5 0.0013 -0.0009 0.0009
6 0.0006 -0.0004 0.0004
7 0.0002 -0.0001 0.0001
8 0.0001 -0.0001 0.0001
9 0.0000 -0.0000 0.0000
10 0.0000 -0.0000 0.0000

The equilibrium of this model was also computed in the presence of a noise disturbance

Qn
t which is correlated over time. Using an ARMA(1, 1) model for trader’s expectations,

the equilibrium was found to be of reduced order, meaning that traders would have an

incentive to fit higher order models. The innovation covariance matrix was identical to the

matrix given by the Kalman filter, except for a very slight difference in the error variance

of Pt. The behavior of the market under correlated noise is qualitatively similar to the

behavior reviewed above, except that the impulse response functions exhibit somewhat

smoother geometric decay.

The fact that excess returns have a predictable component does not imply that rational

traders earn consistent profits each period. Rather, the returns of rational traders contain

a predictable component which is disturbed by a substantial amount of unpredictable

variation. Over short horizons, it may be difficult to make an observational distinction

between rational traders and noise traders. Over longer horizons, noise traders must

experience returns which are below the rate of interest. If Q̄ > 0 and the average position

of noise traders is strictly positive, these returns will be augmented by a risk premium.

Shleifer and Summers (1990) argue that noise traders may not be driven from the

market asymptotically. The arguments are slightly outside the context of the current

model, but are useful if one wishes to extend the results of this section to actual financial

markets. One argument is that when noise traders earn a high return in some period,

other traders may imitiate them. That is, traders may not adhere to a pure strategy, and
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may pursue strategies which have recently exhibited positive returns. Another argument is

that new noise traders may constantly be entering the market, and old traders may return

after replenishing their capital.

1.6. Concluding remarks

In his General Theory, Keynes (1936) suggested that financial markets are driven by

traders devoted to “anticipating what average opinion expects the average opinion to be.

And there are some, I believe, who practise the fourth, fifth and higher degrees”. This paper

extends Sargent’s (1991) method of signal extraction from endogenous variables to calculate

equilibria in markets where this degree of inference is unbounded. By transforming the

infinite dimensional inference problem of traders into a finite dimensional problem which

spans the same information set, it has been possible to calculate rational expectations

equilibria under a variety of assumptions regarding market structure. The matrices which

result from these computations have a natural regression interpretation. This allows the

systematic investigation into the properties of various market equilibria.

In a market where all traders are rational, no trader is able to profit from private

information because price conveys a signal to other market participants. This result is

extremely robust with respect to the quality and allocation of private information, but

quite fragile in the presence of unobserved variability of asset supply. This “noise” com-

plicates the inference problems of traders, resulting in a number of features consistent

with empirical evidence on actual markets. These features include divergence of opinion,

trading volume, mean reversion, dividend yield effects, and “excess” volatility. Clearly, a

similarity between model implications and empirical data does not necessarily imply that

the data were generated by the model. Still, the concept of noisy rational expectations

is interesting because these empirically consistent implications are broadly incompatible

with alternative models which suggest strong efficiency and zero trade.

The modelling approach used here is also a natural framework in which to analyze

contagion in markets. King and Wadhwani (1990) model the international transmission of

price volatility as a result of rational traders extracting information from price changes in

other markets. Pozdena (1991) analyzes banking panics as a result of depositors attempting

to infer information about one bank from the behavior of other banks that share imperfectly
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overlapping characteristics. Sargent (1991) applies the signal extraction framework to a

macroeconomic model of output fluctuations across industries. Firms in this model make

inferences about common economic factors by observing endogenous output prices of other

firms. It is not difficult to think of other important settings in which economic variables

are not only generated by expectations, but simultaneously provide information which

condition those expectations. These settings appear to be promising areas for future

research.
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Appendix 1A

This appendix derives the expression for Pt shown in equation (9) in the text. Since

Et[θ1t+i] = ρi1θ1t and Et[θ2t+i] = ρi2θ2t ∀i > 0, equation (9) may be obtained by treating

the bracketed expectation in equation (7) as the sum of two infinite geometric series. The

following alternative is useful for a wide range of problems involving prediction or signal

extraction, in which the annihilation operator [ ]+ must be evaluated.

Using equation (7) and substituting (1) and (2) for dividends, the equilibrium full

information stock price may be written as

Pt =

[
R−1L−1

(1−R−1L−1)(1− ρ1L)

]
+

ν1t +

[
R−1L−1

(1−R−1L−1)(1− ρ2L)

]
+

ν2t −Ψ

where L denotes the lag operator and [ ]+ is the annihilation operator which ignores

negative powers of L. Each bracketed expression contains a pole inside the unit circle at

R−1, which prevents invertibility to an expansion in strictly positive powers of L. Ignoring

negative powers of L amounts to expanding each expression by partial fractions, and sub-

tracting off the principal part of the Laurent expansion corresponding to the “offensive”

pole. For the first bracketed expression, the offending term is

−R

(R− ρ1)(1−RL)
,

and for the second, the term is

−R

(R− ρ2)(1−RL)
.

The stock price may then be expressed as a function of current and past shocks to the

dividend process.

Pt =
ρ1

(R− ρ1)(1− ρ1L)
ν1t +

ρ2
(R− ρ2)(1− ρ2L)

ν2t −Ψ
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Appendix 1B

This appendix describes the procedure used to calculate the equilibria presented in

the text. We wish to derive a mapping from trader’s perceptions

xat = βaxat−1 +

[
I
I

]
ζat xbt = βbxbt−1 +

[
I
I

]
ζbt (1b)

to the actual law of motion for the state vector

zt = T (β)zt−1 + V (β)εt. (2b)

Traders use the forecasting rules (βa, βb) in conjunction with equation (5) in the text

to determine their desired stock holdings Qa
t and Qb

t . In the presence of a potentially

nonzero noise disturbance Qn
t , market clearing implies

Pt = Λ−1
(
σ2
bαaNφaEa[Pt+1 +Dt+1] + σ2

aαbNφbEb[Pt+1 +Dt+1] +Qn
t σ

2
aσ

2
b − Q̄σ2

aσ
2
b

)
(3b)

where

Λ = RN(σ2
bαaφa + σ2

aαbφb),

and σ2
a and σ2

b are the error variances of a and b in forecasting [Pt+1 + Dt+1]. To avoid

inducing a unit eigenvalue in the T (β) matrix, the supply constant Q̄ is not carried as part

of the state vector. Price is then measured in terms of deviation from the mean.

Define the selector matrices ea, eb, ua, ub so that

zat = eazt xat = uazt

zbt = ebzt xbt = ubzt
. (4b)

Using (3b), we can also define weighted selector matrices ca, cb, un so that price may be

defined in terms of its deviation from mean

Pt = [caβaua + cbβbub + un]zt (5b)
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where ca, cb select and weight the forecasts of a and b of [Pt+1 +Dt+1], and un selects and

weights the noise disturbance Qn
t .

There are two problems here which did not emerge in the model investigated by

Sargent. Since the first element of zt is Pt, it is clear from (5b) that the equilibrium

price depends upon itself. Moreover, the forecast variances σ2
a and σ2

b are unknown. The

required modification to Sargent’s original approach is to compute a fixed point not only

in β, but also in the top row of T (β) and V (β), as well as in σ2
a and σ2

b .

The matrices T (β) and V (β) are constructed as follows. The first rows of T and

V , and the variances σ2
a and σ2

b are initially chosen arbitrarily (each successive iteration

refines these choices). The second and third rows of T and V , corresponding to Sa
t and Sb

t

are implied by (15) in the text. Rows four through six, corresponding to Dt, θ1t, θ2t are

implied by (1) and (2). Row seven of V , corresponding to the noise term Qn
t is

[ 0 0 0 0 0 1 ]

while row seven in T is a zero row when noise is serially uncorrelated, and has an autore-

gressive parameter ρn in column seven if noise is modelled with serial correlation.

Rewriting (16), substituting from (2b) and (5b), and defining a selector matrix eza

such that ζat = ezazt gives

ζat = [eaT (β)−Aaea − Caeza] zt−1 + eaV (β)εt (6b)

The equation for ζbt is symmetric. Since the first rows of T and V are already fixed, and ea

does not select from the last six rows of T and V , it is unneccessary to compute a separate

fixed point in the rows of T and V corresponding to ζat and ζbt.

With these T and V matrices in hand, (2b) and (5b) may be combined to yield

Pt = [caβaua + cbβbub + un]T (β)zt−1 + [caβaua + cbβbub + un]V (β)εt (7b)

This equation is then used to compute new first rows in T and V . This completes the

construction of T and V .
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It is assumed that the eigenvalues of T are all inside the unit circle. This allows the

computation of a stationary covariance matrix for zt, where the matrix Mz(β) = Eztz
′
t

satisfies

Mz(β) = T (β)Mz(β)T (β)
′ + V (β)ΩV (β)′ (8b)

where Ω = Eεtε
′
t. This is a “discrete Lyapunov equation” which may be solved using a

variety of algorithms.

Note that the moment matrix of ζjt gives the forecast error variances and covariances

needed to calculate σ2
a and σ2

b . Given the moment matrix Mz, the selector vectors usj may

be defined so that

σ2
j = usjMzu

′
sj j = a, b. (9b)

The optimal projection laws Sj(β) for j = a, b are given by

Exjt|xjt−1 = Sj(β)xjt−1 (10b)

where

Sj(β) = ujT (β)Mzu
′
j

[
ujMzu

′
j

]−1
(11b)

In some cases, the matrix
[
ujMzu

′
j

]
will become singular, due to linear dependence

in the observables of a or b. This problem may be circumvented following Sargent (1991)

by choosing matrices ujj which restrict the set of regressors used to compute Sj(β). The

columns in Aj , Cj corresponding to the excluded regressors are assigned zero values. Using

the resulting equilibrium, it is straightforward to compute the coefficient of determination

in the regression of the excluded regressors onto included regressors. If this coefficient is

unity, the exclusion does not restrict the information set of a and b in equilibrium.

A rational expectations equilibrium with imperfect, heterogeneous information is the

fixed point β = S(β). Calculation of a fixed point equilibrium proceeds by repeated

iterations on this “S mapping”. Initial arbitrary values for Aa, Ca, Ab, Cb, σ
2
a, σ

2
b and the
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first rows of T (β) and V (β) are updated at each iteration by a convex combination of the

previous value and the newly computed value.
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